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A B S T R A C T   

Early-stage detection of cutaneous melanoma can vastly increase the chances of cure. Excision biopsy followed 
by histological examination is considered the gold standard for diagnosing the disease, but requires long high- 
cost processing time, and may be biased, as it involves qualitative assessment by a professional. In this paper, 
we present a new machine learning approach using raw data for skin Raman spectra as input. The approach is 
highly efficient for classifying benign versus malignant skin lesions (AUC 0.98, 95% CI 0.97–0.99). Furthermore, 
we present a high-performance model (AUC 0.97, 95% CI 0.95–0.98) using a miniaturized spectral range 
(896–1039 cm− 1), thus demonstrating that only a single fragment of the biological fingerprint Raman region is 
needed for producing an accurate diagnosis. These findings could favor the future development of a cheaper and 
dedicated Raman spectrometer for fast and accurate cancer diagnosis.   

1. Introduction 

Excisional biopsy, followed by histopathological examination, is 
considered the gold standard for diagnosing melanoma and non- 
melanoma skin cancer [1,2]. However, removing each suspected skin 
lesion seems unacceptable, especially in cases of a giant or multiple le-
sions, mainly when located in aesthetically essential regions such as the 
face. 

Currently, as a reference standard for the diagnosis of melanoma, 
clinical examination of skin lesions by a dermatologist is followed by 
biopsy and histopathological analysis. The difference in technical 
knowledge or experience of the evaluator exposes chronic cases of 
different diagnoses. The clinical exam sensitivity ranges from 40% to 
80% of accurate diagnoses, depending on the physician's level of 
expertise [3–5]. Diagnosing malignant melanoma can be difficult due to 
its resemblance to specific benign lesions of the skin, such as pigmented 
nevi, and other types of skin cancers, such as basal cell carcinoma [6,7]. 

Braun et al. tested the diagnostic concordance among dermatopatholo-
gists in 1250 samples and revealed Kappa value of 0.8 for the final report 
between melanoma versus non-melanoma lesions and 0.62 for malig-
nant melanocytic lesions versus borderline versus benign lesions [8]. 

An online tool created by the Global Cancer Observatory for the 
World Health Organization gives insight into how incidence and mor-
tality rates for melanoma skin cancer could rise even further over time. 
This tool predicts that by 2025, the number of cases of melanoma skin 
cancer worldwide will rise by 18%, reaching 340,271, while the number 
of deaths is expected to rise 20%, reaching 72,886. By 2040, nearly half 
a million (466,914) people will be diagnosed with melanoma, an in-
crease of 62%; while 105,904 will die from the disease, an increase of 
74%. Furthermore, it shows that delaying treatment of a stage I mela-
noma by just one month increases the risk of death by 5% [9,10]. It's also 
important to note that the difference between the diagnostic and treat-
ment processes for melanoma worldwide is striking. More developed 
countries are more likely to diagnose and treat quickly, whereas in less 
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developed countries people may not immediately seek medical treat-
ment. It may be due to low income, lack of awareness of skin cancer 
signs, or only a lack of healthcare provision [11]. 

Even though many attempts to implement instrumental techniques 
as a reliable non-invasive methodology for detecting skin cancer (such 
as photographs, dermatoscopy, high-frequency ultrasound of the skin, 
and confocal microscopy in vivo), an accurate, quick, painless, and 
affordable device that meets the needs of patients and that is easy to 
adopt for a hospital's diagnostic routine has not yet been created 
[12–15]. Therefore, the creation of a disruptive and innovative meth-
odology for clinical evaluation and support of non- or minimally inva-
sive therapeutic indications for incipient lesions is of paramount 
importance for the accurate and preventive detection of melanoma and 
the clinical control of dysplastic lesions, avoiding multiple and expen-
sive biopsies. 

For this purpose, the development in biotechnology has intensified 
research on auxiliary instrumentation for the physical-chemical analysis 
of tissues, aiming to investigate the structures and interactions of bio-
molecular systems. In the perspective of acquiring biological data in a 
non-invasive way, Raman Spectroscopy has emerged as a technological 
alternative, because it allows access to information on the molecular 
structure of an investigated sample, and has been used for more than 70 
years in physical-chemical non-destructive analyzes [16,17]. This 
method has been used by several researchers for detecting cutaneous, 
genital, brain, breast, and laryngeal tumors, revealing that the transition 
from healthy tissue to cancer is significantly associated with differences 
in the biochemical structures reflected in the Raman spectrum [17–21]. 

Several authors have highlighted the potential of Raman spectros-
copy in disease clinical diagnosis [21–24]. Raman offers many benefits 
because it can be performed in a non- or minimally invasive way, and 
analysis can be rapid and accurate, which may lead to earlier in-
terventions and therapeutic strategies that can reduce morbidity and 
mortality. Raman spectroscopy has been explored as a digital alternative 
for automated early diagnosis, with high precision and accuracy figures, 
easy to perform and that allows the evaluation of skin lesions in minutes 
[25], while the traditional analytical technique (biopsy and histological 
exams) requires hours or even days [26]. The pioneers of skin Raman 
spectroscopy have published the Raman spectral signatures of skin's 
stratum corneum and its annexes obtained in vitro. This data confirmed 
that Raman spectroscopy is a promising tool for investigating the mo-
lecular nature of the skin, because the Raman approach can study 
structural changes linked to various diseases [22]. As a high-precision 
molecular analytical technique, Raman spectroscopy can differentiate 
incipient lesions [27], making it possible to reduce the time or even the 
number of tests necessary to ensure the correct diagnosis [28]. 

Despite the uncomplicated handling of a Raman spectrometer for 
data acquisition experimentally, analysis of the spectra requires quali-
fied expertise, for example, from specialists in Artificial Intelligence 
[29,30]. The desired accuracy for the classification of benign and ma-
lignant tissue Raman spectra requires a deeply structured analytical 
approach applied to the objectives of the studies. Avant-garde projects 
propose the application of state-of-the-art techniques in the Machine 
Learning area with the primary objective of enabling the classification of 
spectra with maximum sensitivity and specificity. 

Santos et al. developed a diagnostic model by Raman Spectroscopy of 
cutaneous melanoma, validated in a set of independent data from 174 
lesions. The diagnostic model correctly classified all melanomas with a 
specificity of 43.8% and sensitivity of 100%, which may indicate that it 
favors an approach to early clinical diagnosis of melanoma by Raman 
spectroscopy [31]. Aubertin et al. analyzed 947 Raman spectra of 
prostatic tissue using machine learning classification with neural net-
works and distinguished between benign and malignant spectra with a 
sensitivity of 87% and a specificity of 86% [32]. Khan et al. performed 
an analysis of hepatitis B virus (HBV) infection in human blood serum 
using Raman spectroscopy combined with a machine learning tech-
nique. Applying a support vector machine (SVM) algorithm with a 

polynomial kernel of order-2, they achieved an accuracy of 98%, 
sensitivity of 100%, and 95% of specificity in the classification of normal 
blood sera from HBV infected sera [33]. Dubey et al. used an SVM in the 
classification between Raman spectra of normal versus malignant breast 
tissue, obtaining an accuracy of 91%, sensitivity of 88%, and specificity 
of 93% [34]. 

Nonetheless, before applying any classification methods, handling 
the Raman spectra requires a deep understanding about its biological 
sample origin, the Raman technique used for the experiments, and the 
mathematical approaches to better extract Raman spectra statistical 
features. Firstly, fluorescence can be the most important disadvantage of 
Raman spectroscopy, especially for biological sample investigations 
[35,36]. Usually, the most important sources of autofluorescence in 
tissue samples are hemoglobin, melanin, collagen, lipids, and proteins 
[37]. Fluorescence intensity could be as great as 104 compared to the 
Raman signal [13,14]. This means that Raman peaks are overshadowed 
by a strong and broad fluorescence spectrum. 

Therefore, when analyzing pigmented skin lesions, the influence of 
melanin fluorescence in the Raman of the skin data must be considered. 
Several studies have proposed automatic algorithms to remove fluo-
rescence's influence on the Raman spectra, but none of these methods 
were able to resolve the broad melanin Raman bands, which usually are 
superimposed to the intrinsic fluorescence signal [38,39]. These spectral 
pre-processing methods used in most studies to date have attempted to 
remove background fluorescence and filter noise from pigmented skin 
Raman data, without considering that such information may be relevant 
for a more complete characterization of the structure. Most researchers 
agree that these procedures should be conducted with the utmost rigor, 
and should have no human intervention before the statistical analysis of 
the Raman spectra is complete [40]. 

In order to solve pre-processing issues, many studies have used sta-
tistical features to recognize patterns in time series. Lambrou and 
Kudumakis [41] use mean, variance, skewness, kurtosis, and entropy as 
statistical features to classify audio signals. Arnaout et al. use visual 
analytics techniques to explore some statistical features of sensor mea-
surement [42]. Esmael et al. [43] calculate many statistical features to 
measure the properties of drilling data, like variance, mean, and skew-
ness. Their results show how the statistical features are essential in 
detecting different situations in the underlying drilling process. Afseth 
et al. [44] attempted to robustly extract information from the various 
algorithms that are used to pre-process the Raman spectra of different 
samples. Their conclusions and recommendations influenced the study 
protocol to better deal with the background fluorescence also consid-
ering pigmented Raman data. 

Accordingly, this present study has processed individual raw human 
skin Raman spectra to extract its critical statistical features. This paper's 
central goal is to propose a new machine learning approach for modeling 
Raman data, allowing biological sample identification through a specific 
miniaturized spectroscopy range. We intend to extract statistical fea-
tures from pigmented skin Raman spectra raw data by identifying their 
most predictive mathematical features and representative spectroscopy 
range to distinguish melanoma from pigmented nevi. In summary, the 
main contributions of this paper are:  

• We present a new approach of feature extraction for human skin 
Raman spectral data, focusing on their spectra's local properties. We 
fragmented each spectral range into continuous small subsets and 
calculated each element's statistical features;  

• By employing the statistical features mentioned above as training 
data, we developed machine learning models capable of classifying 
Raman skin human tissue spectra among malignant Melanoma (ME) 
and benign Melanocytic Nevus (MN) with high performance (AUC 
0.98, 95% CI 0.97–0.99), by analyzing the well-known “Raman 
biological fingerprint region” (800–1800 cm− 1);  

• Finally, and most importantly, we developed a high-performance 
model (AUC 0.97, 95% CI 0.95–0.98) using a miniaturized spectral 
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range (896–1039 cm− 1), proving that only a single and reduced 
fragment of the biological fingerprint Raman region is needed to 
classify benign versus malignant skin lesions. This finding adds new 
information to allow the future development of a cheaper and 
dedicated Raman spectrometer for cancer diagnosis. 

2. Data and method 

The study was consistent with the Ethical Principles for research 
involving humans as provided in Resolution 196/96 of the Brazilian 
National Health Council. All skin samples were obtained under a pro-
tocol approved by UNIFESP Institutional Review Board (Protocol 1895/ 
07). 

2.1. Dataset 

For this study, 33 MN samples and 51 ME samples were obtained 
from surgical resection, stored at − 196 ◦C, brought to room temperature 
in 0.9% saline solution, standardized in 2 mm3 cuts, and further placed 
in a specific experimental sample holder. The FT-Raman spectrometer 
(RFS 100, Bruker®) was used to acquire data in vitro. An Nd:YAG laser 
@1064 nm excited the samples, and the Raman signals were collected by 
a Germanium detector cooled by liquid nitrogen, with the following 
acquisition parameters: laser power at 100–300 mW; 500 scans, and 2 
cm− 1 resolution. From each sample, five to ten spectra were acquired, at 
different points, in a “cross shape”, separated by 100 μm increments in 
the x and y directions automatically. Such increments were adjusted by a 
micro-translation stage attached to the FT-Raman spectrometer. After 
spectra collection, all fragments were accordingly prepared to be sent for 
histopathological testing. Altogether, 436 Raman spectra were 
collected, 168 from MN, and 268 from ME. 

The process of a differentiated and individualized skin lesions med-
ical diagnosis considers both the patient's clinical and epidemiological 
context and the adequacy of these lesions to their morphological cate-
gories. Given the limited number of skin response patterns in the face of 
different pathological processes, the pattern-based classification method 
is a guide for the diagnosis of an unknown case. For pigmented lesions, 
one can consider grouping the following morphological categories into 
four differential diagnoses: (a) superficial and deep melanocytic nevus; 

(b) pigment synthesizing dermal neoplasms; (c) primary tumorigenic 
melanomas; and (d) metastatic malignant melanoma [45]. In this study, 
MN (n = 168) and ME (n = 268) spectra were grouped, following the 
basic morphological categories criterion used for differential diagnosis. 
The MN group was composed of superficial and deep melanocytic nevus, 
and the ME group is composed of primary melanoma (n = 144) and 
metastatic melanoma (n = 124) spectra. 

Fig. 1 shows the normalized mean intensity and standard deviation 
areas around the curves of the FT-Raman spectra of ME and MN groups 
in the 800 to 1800 cm− 1 “biological fingerprint” spectral region. 

“Biological Fingerprint” spectral features, commonly found in skin 
Raman spectra in the literature, were also observed similarly in our 
findings. Major differences between benign and malignant spectra were 
found in protein bands amide I (1640–1680 cm− 1), amide III 
(1220–1300 cm− 1), and n(C–C) stretching (probably in amino acids 
proline, hydroxyproline, 928–940 cm− 1), and in bands characteristic of 
lipids, CH2 scissoring vibration (1420–1450 cm− 1), and -(CH2)n- in- 
phase twist vibration around 1300 cm− 1; moreover, possible changes 
in polysaccharide structure were found in the region 840–860 cm− 1 

[22,23,38,39,44,46]. 

2.2. Fluorescence background data pre-process 

Normally, most molecules exist in the ground electronic state 
(especially the lowest vibrational levels) at room temperature. After 
interacting with electromagnetic radiation, some molecules gain energy 
and occupy higher vibrational levels of the excited electronic states. 
After this, the molecules immediately lose their energy by collisions and 
go to the lowest vibrational level of the excited state. Finally, the mol-
ecules may fall to any of the vibrational levels of the ground state, so the 
energy differences between both electronic states arise as a form of 
fluorescence radiation [47]. 

In order to avoid fluorescence in the first place, choosing low laser 
frequencies as excitation sources could diminish the probability of 
fluorescence emission [17]. So, the use of higher wavelengths in near- 
infrared regions is helpful for reducing the fluorescence effect. Our 
skin data were collected employing the FT-Raman system equipped with 
a laser at 1064 nm, and in this excitation wavelength, the intrinsic 
fluorescence background level is extremely less pronounced in the 

Fig. 1. Normalized mean intensity and standard deviation areas around the curves of the FT-Raman spectra of Melanoma (ME) and Melanocytic Nevus (MN) spectra.  
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region from 800 to 1800 cm− 1 [38,47]. For that reason, we decided not 
to pre-process the data for autofluorescence, thus directly applying our 
new machine learning methodology, which involves extracting relevant 
statistical features from the raw data at the “biological fingerprint” re-
gion range [38,44]. 

Time-series data often exhibit inter-class differences in terms of small 
subsequences rather than the full series structure. Due to the similarity 
between the FT-Raman spectra and the general time-series data, part of 
the Ye and Keogh Shapelets technique was adapted to our machine 
learning protocol. Shapelets are defined as subsequences that are 
representative of a class. In a binary classification setting, a shapelet is 
discriminant if it is present in most series of one class and absent from 
the series of the other class. Using shapelets in a classification problem 
benefits models' explainability, speed, and accuracy [48]. 

2.3. Definitions and feature extraction 

Definition 1. A time series T ∈ IRn is a sequence of real-valued numbers 
t1 ∈ IR : T = [t1, t2,…, tn], where n is the length of T. Similarly, a spectrum 
S ∈ IRn is a sequence of real-valued numbers s1 ∈ IR, where i represents 
the spectral region in cm− 1. Thus, in our problem, S = [s800,…, s1800]. 

We are not interested in the global, but the local properties of a 
spectrum. A local region of a spectrum is called a subsequence. 

Definition 2. A subsequence Si, m of a spectrum S is a continuous subset 
of the values from S of length m starting from spectral region i. Formally, 
Si, m = [si, si+r,…, si+(m− 1)*r], where r is the resolution acquisition 
parameter, and m is the defined subsequence length. 

In order to extract relevant statistical features from the FT-Raman 
spectra, we performed the following two steps: 

1. Sliced each spectrum S into subsequences Si, m, each one con-
taining the same length m. In order to select the appropriate granularity 
for the data, we tested different m's, varying from 5 to 100 contiguous 
data points. 

2. For each subsequence Si, m, we calculated seven statistical fea-
tures shown by Table 1. 

3. Results and discussion 

3.1. Experimental setup — models construction and evaluation 

The statistical features calculated were then used as input for the 
classification of ME vs. MN, using the fast LightGBM implementation 
[49]. LightGBM produces a complex model composed of hundreds of 
simple decision trees that are finally combined into a single model by a 
process known as boosting [50]. Random Forest, K-Nearest Neighbors 
(KNN), and XGBOOST algorithms were also tested, but, since their 
performance was very similar, only slightly worse than that of 
LightGBM, all the experiments reported in this work use LightGBM. To 
evaluate the performance of the models we used the standard area under 
the ROC curve (AUC) measure [51]. In order to improve the robustness 
of the estimations, we conducted five-fold cross-validation, that is, data 
is arranged into five folds, and at each run, four folds are used as a 
training set, and the remaining fold is used as a test set. We report the 
average AUC value over the five runs. 

As a baseline, we averaged AUC values of models built using as input 
all the statistical features calculated for different subsequence lengths 
(m = [5,25,50,100]) in the entire spectral range (800–1800 cm− 1). 
Table 2 presents the average values of AUC and corresponding 95% 
Confidence Interval (95% CI) obtained for each m. We can observe that 
the AUC values do not significantly vary across different values of m. 

In order to assess feature importance and thus extract intuitive in-
sights from the prediction, we applied the SHAP algorithm [52] to every 
model. Briefly, SHAP calculates the importance of each statistical 
feature by estimating the effect of its absence on the model's decision. 
We plot, for each model, the five most important statistical features for 
every spectrum, and these results are depicted in the summary plot 
shown in Fig. 2. Red points are associated with spectra for which the 
corresponding statistical feature shows a relatively high value. Blue 
points, on the other hand, are associated with spectra for which the 
corresponding statistical feature shows a relatively low value. Further, 
there is a vertical line separating spectra associated with either negative 
(points on the left) or positive decisions (points on the right). For 
instance, points located in the left side are those for which the model 
provided a negative decision, that is, benign pigmented skin MN. 

The most important feature observed in all the models is the Deriv-
ative. In order to evaluate simpler models – that use only this statistical 
feature – we performed experiments for each m, as can be seen in 
Table 3. 

As we can see in Table 3, the AUC values of the models that use only 
the Derivatives are very similar to the models that use all the statistical 
features for m = [5,25,50], being a little better for m = 5 and a little 
worse for m = 25 and m = 50. Considering m = 100, the AUC was 0.032 
lower using only the Derivatives. Because (1) we are interested in 
creating models that use miniaturized spectroscopy regions, and (2) 
there was not a significant difference between different lengths (m's), 
from now on we are going to consider only models for m = 5 in the 
experiments. Besides, because (3) there was not a significant difference 
between the model that uses only Derivatives and the one that uses all 
the statistical features, we are going to use only the Derivatives as fea-
tures in the experiments. 

Table 1 
Statistical features calculated for each subsequence Si, m.  

Statistical 
feature 

Description Formula 

Arithmetic 
mean (μi, m) 

μi, m is the simple average of the 
values of a subsequence Si, m. 

μi,m =
1
m

∑m− 1
k=0

si+kr  

Standard 
deviation (σi, 

m) 

σi, m measures how the values of 
subsequence Si, m are spread out. σi,m =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
m

∑m− 1
k=0

si+kr − μi,m

√ 2  

Kurtosis (Kui, 

m) 
Kui, m measures the peakedness of 
the probability distribution of 
subsequence Si, m. 

Kui,m =

1
m

∑m− 1
k=0

(
si+kr − μi,m

)4

σ4
i,m  

Skewness (Ski, 

m) 
Ski, m is a measure of symmetry of 
subsequence Si, m. A distribution is 
symmetric if it looks the same to the 
left and right of the corner point. 

Ski,m =

1
m

∑m− 1
k=0

(
si+kr − μi,m

)3

σ3
i,m  

Derivative (Di, 

m) 
Di, m measures the steepness of 
subsequence Si, m. 

Di,m =
μi,m − μ(i− m*r),m

μi,m  

Maximum 
(Maxi, m) 

Maxi, m measures the maximum data 
point of subsequence Si, m. 

Maxi, m = max (Si, m) 

Minimum 
(Mini, m) 

Mini, m measures the minimum data 
point of subsequence Si, m. 

Mini, m = min (Si, m)  

Table 2 
Average AUC values and 95% CI range obtained using all the statistical features 
in the full spectral range (800–1800 cm− 1), separated by subsequence lengths 
(m).  

Subsequence length (m) 

5 25 50 100 

0.978 
(0.972–0.994) 

0.980 
(0.964–0.990) 

0.988 
(0.984–0.992) 

0.982 
(0.963–0.996)  
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3.2. Finding an original predictive spectral range 

In this subsection we present results for the classification of ME vs. 
MN using machine learning models created with parts of the total 
spectral range (800–1800 cm− 1). Our main goal is to identify an original 
predictive spectroscopy range for this classification, which could allow 
future miniaturization of the specified spectroscopy range for identi-
fying benign vs malignant pigmented skin samples. 

Finding the optimal machine learning model, i.e., the subset of fea-
tures for which we achieve the best prediction accuracy, would require 
the exhaustive enumeration of all combinations of features. Alterna-
tively, we sample the model space by randomly selecting an initial 
feature and a range size, and further randomly adding or not the next 
features within the chosen range size. At the end, we select the best 
performing models. 

We sampled over thousands of mini-models - that consider spectral 
sizes varying only from 20 cm− 1 to 300 cm− 1 — for the classification of 
ME vs. MN, where each mini-model is composed by the Derivatives 
calculated for the subsequences of length m = 5 in different spectroscopy 
ranges. The range size and respective Derivatives within a model were 
randomly selected, thus resulting in models with diverse predictive 
performance. Of the thousands of mini-models generated, 158 achieved 
AUC higher than 0.960. Fig. 3 shows these best mini-models spectral 
ranges. 

As we can see in Fig. 3, almost all of the best mini-models are 
concentrated in the spectral range of (800–1200 cm− 1). 

3.3. Finding the best miniaturized model for differential diagnosis 

As we can see in Fig. 4, seven mini-models achieved the highest AUC 
values, between 0.970 and 0.973. All of them use spectral regions 

between 838 and 1050 cm− 1, showing that this is the most predictive 
region for the separation of ME vs. MN. 

Since our main objective in this study is to find a miniaturized Raman 
spectroscopy region that is able to differentiate ME from MN, we chose 
among the seven best mini-models the one with the smallest spectral 
size. This model is able to distinguish between benign and malignant 
pigmented skin spectra with an AUC of 0.973 95% CI 0.952–0.982), a 
sensitivity of 0.930 and a specificity of 0.870. Fig. 5 shows its ROC curve 
and corresponding AUC. 

This model uses the Derivatives calculated in the region of 896–1039 
cm− 1, thus using a total spectral size of only 143 cm− 1. Fig. 6 displays 
the SHAP Summary Plot of this mini-model, showing that the most 
important region for the model's decision making is the 915–924 cm− 1, 
followed by 1031–1039 cm− 1. These two regions are well known for 
C–C stretch of proline and hydroxyproline (collagen) amino acids, 

Fig. 2. Summary plots showing the five most important statistical features for every model. The name of each feature in the plots is composed by the abbreviation of 
the Statistical Feature name plus the respective spectroscopy range — for example, ‘Der 992–1183’ is the Derivative calculated in the range 992–1183. 

Table 3 
Average AUC values and 95% CI range obtained using only Derivatives in the full 
spectral range (800–1800 cm− 1), separated by subsequence lengths (m).  

Subsequence length (m) 

5 25 50 100 

0.980 
(0.965–0.991) 

0.974 
(0.962–0.991) 

0.973 
(0.963–0.995) 

0.950 
(0.928–0.969)  

Fig. 3. The 158 mini-models that achieved AUC ≥0.960. Each line represents 
one model, and the dark green shows its spectral range. Empty spaces in the 
middle of some lines show that the Derivatives within that empty range were 
not used by the mini-model. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.) 
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glucose and lactic acid (extracellular-degrading enzymes), and C–H 
plane bending mode of phenylalanine (collagen), respectively 
[15,47,53]. 

Since we are working with melanin pigmented samples, it is essential 
to mention that melanin is not as relevant as collagen in differentiating 
melanoma from other pigmented skin lesions because melanomas do not 
always have more melanin than benign pigmented lesions [54]. Many 
studies also published some of the Raman spectral features of melanin in 
vitro [55,56] and in vivo [53,57]. It was found that free-melanin Raman 
bands D, D′, G, G′ were centered at 1347, 1407, 1554, and 1608 cm− 1, 
respectively, and attributed to stretching vibrations of the aromatic 
C––C bond. In conclusion, our seven mini-models that achieved the 
highest AUCs (between 0.970 and 0.973) employed the spectral regions 
between 838 and 1050 cm− 1, confirming that melanin Raman signals 
were unnecessary for the separation of ME vs. MN. 

Feng et al. developed a biophysical basis and compared it to a 

classification model of Malignant Melanoma (MM) vs. Dysplastic Nevi 
(DN) Raman spectra. Their biophysical model revealed that the bio-
markers responsible for the variances between these two pathologies 
were similar “fingerprint biological Raman band” reported here and in 
the literature [58–60]. Their best statistical analysis result indicated that 
collagen and triolein contributed significantly to MM and DN's spectral 
variance. AUC was 0.99, and specificity was 94% (90% to 95% sensi-
tivity). They also found that the collagen content decreases significantly 
from benign lesions to cancer [54]. This decreased collagen in cancer 
was also observed in previous biophysical models of Raman ex vivo 
human skin fragments [61], breast tissue [21], gastric/esophagus tissue 
[62], and cervical tissue [62,63]. This may be partially explained by the 
release of metalloproteinases by cancerous cells to degrade dermal 
connective tissue [64,65] and extracellular-degrading enzymes secreted 
from fibroblasts that damage the stroma [66]. 

Consequently, we can correlate proline, hydroxyproline, phenylala-
nine, glucose, and lactic acid link with the collagen/extracellular matrix 
imbalance to the histopathological patterns in the melanoma progres-
sion disease features applied for a differential diagnosis: (a) dermal in-
vasion, (b) inflammatory response at the tumor microenvironment, and 
(c) regression. 

Dermal invasion is characterized by a proliferation of spindle- 
shaped, hyperchromatic melanocytes coursing in fascicles, nests, and 
single cells through the dermis. It usually progresses from an early radial 
growth phase confined within the epidermis to a vertical growth phase 
characterized by dermal invasion, where metastasis risk is high [66,67]. 
The complex inflammatory processes may support the understanding of 
the prognosis of melanoma. Different components of the tumor micro-
environment could have stimulatory and inhibitory effects on melanoma 
progression by regulating its gene's expression repertoire within the 
tumor cells on the one hand and the stroma cells on the other, leading to 
the acquisition of the metastatic phenotype. This phenomenon is un-
usual in benign melanocytic proliferations [68]. Regression is also pre-
sent in many invasive melanomas. It is a partial host response to a 
malignant neoplasm, resulting in the focal diminution of the process, 
and recently found to be a favorable prognostic factor for patients with 
initial stage melanomas. Histologically, the changes are similar to those 
seen in a scar [69]. 

Finally, the present paper compares some significant histopatho-
logical changes described in the Literature and the Raman spectra of skin 
pigmented lesions associating them to a possible melanoma differential 
diagnosis. This study aims to provide a Machine Learning perspective on 
the series of Raman biochemical changes that can be used to establish 
(or exclude) a diagnosis of melanoma. Fig. 7 shows a diagram with the 
methodology steps covered in this paper. 

4. Conclusion 

This paper studied the complexity of classifying raw skin Raman 
spectra as benign MN or malignant ME clinical conditions. Our proposed 
machine learning approach was built in four steps: (i) extraction of local 
statistical features in each spectrum; (ii) development of performant 
LightGsBM models (AUC ≥0.97) using the full available spectral “bio-
logical fingerprint” region (800–1800 cm− 1); (iii) identification of the 
most predictive spectral region, which turned out to be 800–1200 cm− 1 

and; (iv) development of a high performance model (AUC = 0.97) using 
the smallest possible region (896–1039 cm− 1) in which the most crucial 
region for the model's decision making was 915–924 cm− 1, followed by 
1031–1039 cm− 1. Biochemically, when comparing these findings to a 
well-established Raman table data, these two smallest regions are 
known for the C–C stretch of proline, hydroxyproline, glucose, and 
lactic acid, and the C–H plane bending mode of phenylalanine. When 
related to the melanoma progress, the biochemical changes associated 
with these biochemical components refer to changes in the stroma's 
structural collagen adjacent lesions. More significant stromal perme-
ability allows cellular invasion to adjacent structures, lymphatic and 

Fig. 4. The 7 mini-models that achieved AUC ≥0.970. Each line represents one 
model, and the dark green shows its spectral range. Empty spaces in the middle 
of some lines show that the Derivatives within that empty range were not used 
by the mini-model. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 

Fig. 5. ROC curve. The blue line shows the best miniaturized model predictions 
and the black dotted one shows random predictions. The orange dot shows the 
point where the sensitivity is 0.930 and the specificity is 0.870. (For interpre-
tation of the references to color in this figure legend, the reader is referred to 
the web version of this article.) 
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Fig. 6. Summary plot of the best mini-model generated (AUC = 0.973), showing the effects each Derivative has in identifying ME vs. MN spectra.  

Fig. 7. Diagram summarizing the steps we have followed in this work.  
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blood vessels, and it may cause inflammatory infiltration reactions. In 
addition, melanin is not as relevant as collagen in differentiating mel-
anoma from other pigmented skin lesions because melanomas do not 
always have more melanin than benign pigmented lesions, confirming 
that melanin Raman signals were unnecessary for the separation of ME 
vs. MN using our seven mini-models approach. Therefore, our machine 
learning approach on skin Raman raw data could allow the future 
development of a cheaper and dedicated spectrometer for a dermato-
logical routine checkup. It may increase the early-stage detection of 
melanoma rate, also avoiding unnecessary biopsy and histopathological 
analysis, consequently reducing health costs to save lives. 

It is worth mentioning that the evidence base shown so far is limited, 
as these device technologies and mathematical approaches have not yet 
been incorporated into a clinical routine. To date, it is not clear how the 
new Raman devices would perform in a non-research environment or 
what would be the ideal location for diagnosis. Multicenter confirmatory 
studies will be useful in this regard. 
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